

nm $\Delta\epsilon_{290} = +0.19$, $\Delta\epsilon_{230} = +0.50$ ^1H NMR and ^{13}C NMR
see Tables 1 and 2

1,5-Dioxo-2-oxa-3(S),9(R)-diacetyl-4(R)-8(R)-dimethylhexahydroindane (1b) Colourless oil (200 mg) $\text{C}_{14}\text{H}_{18}\text{O}_7$. $[\alpha]_D^{25} = +21.35^\circ$ (CHCl_3 , c2.13) IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 3500 (w), 1810, 1790, 1750, 1720, 1375, 1220, 1180, 1150, 1000. CD (MeOH) nm $\Delta\epsilon_{290} = +0.27$, $\Delta\epsilon_{230} = +0.45$. ^1H NMR and ^{13}C NMR: see Tables 1 and 2

1,5-Dioxo-2-oxa-3(R),9(R)-diacetyl-4(R),8(S)-dimethylhexahydroindane (2a) Colourless oil. (24 mg) $\text{C}_{14}\text{H}_{18}\text{O}_7$. $[\alpha]_D^{25} = +34.8^\circ$ (CHCl_3 , c2.4) IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 3450 (w), 1820, 1790, 1760, 1730, 1470, 1390, 1250, 1200, 1130, 1000. CD (MeOH) nm $\Delta\epsilon_{290} = +0.64$, $\Delta\epsilon_{230} = +1.39$. ^1H NMR and ^{13}C NMR see Tables 1 and 2

1,5-Dioxo-2-oxa-3(S),9(R)-diacetyl-4(R),8(S)-dimethylhexahydroindane (2b) Colourless oil (40 mg) $\text{C}_{14}\text{H}_{18}\text{O}_7$. $[\alpha]_D^{25} = +17.47^\circ$ (CHCl_3 , c1.75). IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 3500 (w), 1800, 1770, 1760, 1720, 1480, 1390, 1220, 1180, 990. CD (MeOH) nm $\Delta\epsilon_{290} = +0.15$, $\Delta\epsilon_{230} = +0.51$. ^1H NMR and ^{13}C NMR see Tables 1 and 2

Salamanca for a graduate fellowship for Anna Matilde Lithgow Bertelloni.

REFERENCES

- 1 Eisenbraun, E J, Browne, C E, Irwin-Willis, R L, McGurk, D J, Eliel, E L and Harris, D L. (1980) *J Org Chem* **45**, 3811
- 2 Sastry, S D, Springstube, W R and Waller, G R. (1972) *Phytochemistry* **11**, 453.
- 3 Breitmaier, E and Voelter, W (1978) ^{13}C NMR-spectroscopy. *Monographs in Modern Chemistry* Vol. 5. Verlag Chemie, New York
- 4 Wehrli, F W and Nishida, T (1978) in *Progress in the Chemistry of Organic Natural Products*. Springer, Wien.
- 5 Ciardelli, F. and Salvadori, O (eds) (1973) *Fundamental Aspects and Recent Developments in Optical Rotatory Dispersion and Circular Dichroism*, pp. 89–147. Heyden, London
- 6 Kagan, H B (ed) (1977) *Stereochemistry Fundamentals and Methods* Vol 2. Georg Thieme, Stuttgart
7. Bhacca, N. S and Williams, D. H (1966) *Applications of NMR Spectroscopy in Organic Chemistry*, pp. 163–171 Holden-Day, San Francisco

Acknowledgements—We thank the Diputació Provincial de

Phytochemistry, Vol 27, No 5, pp 1527–1529, 1988
Printed in Great Britain

0031-9422/88 \$3.00 + 0.00
Pergamon Press plc

A SESQUITERPENE-COUMARIN ETHER AND AN ACETYLENIC COMPOUND FROM *TANACETUM HETEROTOMUM*

NEZHUN GÖREN, AYHAN ULUBELEN and SEVİL ÖKSÜZ

Faculty of Pharmacy, University of Istanbul, Istanbul, Turkey

(Revised received 31 July 1987)

Key Word Index—*Tanacetum heterotomum*, Compositae, sesquiterpene-coumarin ethers, acetylenic compounds, spiroketal-enoetherpolynes

Abstract—The aerial parts of *Tanacetum heterotomum* afforded in addition to known compounds, a new spiroketalenoetherpolyne and a new sesquiterpene-coumarin ether. The structures were elucidated by spectral methods.

INTRODUCTION

Tanacetum species have been investigated for their sesquiterpene lactones and other compounds. Since *Tanacetum heterotomum* Bornm. is an endemic plant in Turkey, it was investigated in order to find its compounds.

RESULTS AND DISCUSSION

The aerial parts of *T. heterotomum* contain known compounds, taraxasterol, lupeyl acetate, epifriedenol, is-

ofraxidin [1], 6,7,8-trimethoxycoumarin, 6',7'-dimethoxyfeselol (1) [2], a C_{14} acetylenic compound (2) [3], and two new compounds, a spiroketalenoetherpolyne (3) and a sesquiterpene-coumarin ether (4). The structures of the compounds were established by spectral methods.

The IR spectrum of 3 showed an acetylene band at 2160 cm^{-1} , an ester band at 1740 and 1260 cm^{-1} and unsaturation at 1680 cm^{-1} . The high resolution mass spectrum gave a molecular peak at m/z 300.136 ($\text{C}_{18}\text{H}_{20}\text{O}_4$). Although the ^1H NMR spectrum of 3 was very close to that of spiroketalenoetherpolyne (5) previously found in *Tanacetum parthenium* [4], they were not identical (Table 1). To understand the differences,

Table 1 ^1H NMR spectrum of compounds **3** and **5** (400 MHz, CDCl_3)

H	3	5
1 β	4.25 dd	4.38 dd
1 α	4.29 dd	4.04 ddd
2 α	5.38 dddd	5.49 dddd
3 β	2.35 dd	2.74 dd
3 α	2.41 dd	2.28 ddd
5	6.12 dd	6.21 dd
6	6.29 d	6.27 d
8	4.54 br s	4.67 br s
13	1.97 d	2.00 d
OCOR	2.50 d	2.21 d
	2.22 tqq	2.10 tqq
	1.02 d	
		0.97 d
		1.01 d

J (Hz) Compound **3** 1 α ,1 β =10,
1 β ,2 α =2.5, 1 α ,2 α =5, 2 α ,3 α =6,
2 α ,3 β =6, 3 α ,3 β =14, 5,6=5.5, 5,8
=0.6, 8,13=1, isoval 2,3=3.4,
=3.5=7
Compound **5** 5,6=5.5, 5,8=8.13
=1, isoval 2'',3''=3'',4''=3'',5''
=7

NOE experiments were performed (Table 2). The irradiation of H-1 α caused NOE with H-2, the irradiation of H-2 enhanced H-3 α and H-1 α . Thus the NOE experiments confirmed that the ester group has the β -configuration, while it was α in compound **5**.

The IR spectrum of **4** showed a ketone band at 1719 cm^{-1} , ester bands at 1740 (sh), 1280 cm^{-1} , and the aromatic bands at 3030, 1560, 1510, 1480, 750 cm^{-1} . The high resolution mass spectrum of **4** gave a molecular ion peak at m/z 540 272 ($\text{C}_{31}\text{H}_{40}\text{O}_8$). The ^1H NMR spectrum exhibited methyl singlets at δ 1.22 (H-12), 1.17 (H-13), 1.20 (H-14) and 2.08 (H-15). A doublet at δ 4.64 for H-3 indicated an ester group and a broadened singlet at

Table 2 NOE experiment with compound **3** (400 MHz, CDCl_3)

Irradiated protons	Affected protons
H-5	H-1 (8%)
H-2	H-3 (6%), H-1 (8%)
H-6	H-8 (15%)
H-1	H-2 (10%)

δ 5.89 revealed the olefinic proton at C-7. The typical coumarin ring doublets were observed at δ 7.61 (H-4') and 6.36 (H-3'). A singlet at δ 6.68 (H-5') and two methoxyl singlets at δ 3.99 and 3.94 showed the presence of two methoxyl groups on a coumarin ring. These signals indicated an isofraxidin moiety. The two doublets at 4.38 and 4.25 indicated the C-11 protons and the signals at δ 0.97 (d, H-5'' and H-4''), 2.23 (d, H-2''), 2.14 (tqq, H-3'') an isovalerate moiety as the ester group. The protons were assigned by spin-decoupling experiments. The doublet at δ 4.64 (H-3) collapsed to a doublet when H-2 was irradiated. The irradiation of H-9 at δ 2.04 converted the doublet at δ 4.38 and 4.25 (H-11 and H-11') to doublets and the irradiation of H-2 at δ 1.8 and H-1 at δ 2.4 collapsed the triple doublet at δ 1.45 (H-2') to a doublet.

EXPERIMENTAL

Tanacetum heterotomum was collected from central Turkey (Sivas). A voucher (185 225) is deposited in the Herbarium of Faculty of Science and Literature, University of Cumhuriyet (Sivas, Turkey). Dried and powdered aerial parts of *Tanacetum heterotomum* (2.5 kg) were extracted with Et_2O -petrol (1:2) and the extract was treated with MeOH to remove long chain saturated hydrocarbons, the residue was roughly separated by CC (silica gel), then the fractions were further separated by TLC. Thus 10 mg taraxesterol, 35 mg luepetyl acetate, 30 mg epifriedelolin, 6 mg isofraxidin, 8 mg 6,7,8-trimethoxycoumarin, 5 mg **1**, 8 mg **2**, 6 mg **3**, 25 mg **4** were obtained.

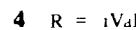
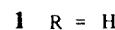
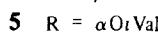
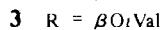
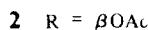
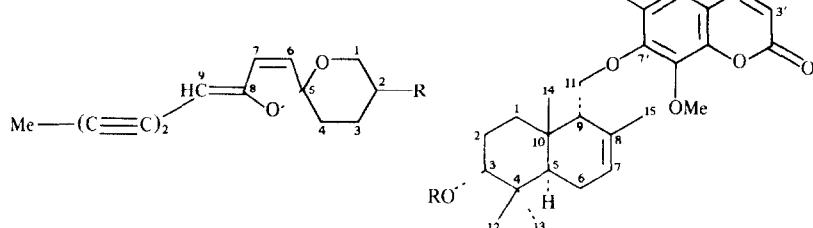







Table 3. ^1H NMR spectrum of compound 4 (400 MHz, CDCl_3)

H	
1	2.4 <i>m</i>
2	1.8 <i>ddd</i>
2'	1.45 <i>ddd</i>
3	4.635 <i>dd</i>
7	5.885 <i>br s</i>
9	2.04 <i>br t</i>
11	4.38 <i>dd</i>
11'	4.25 <i>dd</i>
12	1.22 <i>s</i>
13	1.17 <i>s</i>
14	1.20 <i>s</i>
15	2.075 <i>d</i>
3'	6.36 <i>d</i>
4'	7.605 <i>d</i>
5'	6.68 <i>s</i>
OMe	3.985 <i>s</i>
OMe	3.94 <i>s</i>
OCOR	0.97 <i>d</i>
	1.21 <i>d</i>
	2.23 <i>d</i>
	2.14 <i>tqq</i>

J(Hz): 1,2' = 3.5, 1,2 = 7.5; 2,2' = 13; 2',3 = 13; 2,3 = 5, 11,11' = 10; 9,11 and 11'($W_{1/2}$) = 4, 3',4' = 10, Oval. 2",3" = 3",4" = 3",5" = 4",5" = 7

2β-*Isovaleryloxy*-8*Z*-C₁₃ *spiroketalenol ether* (3). Amorphous, colourless compound. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} 2160, 1740, 1260, 1680 ^1H NMR given in Table 1. MS *m/z* (rel. int.) 300 (36) [M]⁺ (C₁₈H₂₀O₄) (58), 198 [M - C₄H₉CO₂H]⁺ (65), 185 (50), 169 (46), 85 [C₄H₉CO]⁺ (86), 57 [85 - CO]⁺ (100)

6-Oxo-drimenol-3α-isovalerate-isofraxidin-ether (4). Amorphous, colourless compound IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 3030, 2940, 2840, 1730, 1710, 1600, 1560, 1510, 1480, 1450, 1360, 1280, 1120, 1040, 750 ^1H NMR given in Table 3. MS *m/z* (rel. int.) 540 (272) [M]⁺ (C₃₁H₄₀O₈) (2.8), 439 [M - OCOC₄H₉]⁺ (1.3), 319 [M - a]⁺ (2.3), 222 [a + 1] (100), 199 (28), 85 (58), 69 (57), 57 (68), 55 (66).

Acknowledgements—This work was supported by the Health Sciences Institute of the University of Istanbul (Grant No 114-116/270585). We thank Prof. Dr F. Bohlmann (T. U. Berlin) for his help in structure elucidation.

REFERENCES

1. Borris, R. P., Cordell, G. A. and Farnsworth, N. R. (1980) *J. Nat. Prod.* **43**, 641
2. Greger, H., Hofer, O. and Robien, W. (1983) *J. Nat. Prod.* **46**, 510
3. Bohlmann, F., Burkhardt, T. and Zdero, C. (1973) *Naturally Occurring Acetylenes*, p. 50 Academic Press, New York.
4. Bohlmann, F. and Zdero, C. (1983) *Phytochemistry* **21**, 2543